

US009088137B2

(12) United States Patent

Farrell et al.

(10) Patent No.: US

US 9,088,137 B2

(45) **Date of Patent:**

Jul. 21, 2015

(54) SPARK PLUG

(71) Applicant: Nano Spark Inc., Toronto (CA)

(72) Inventors: Mark Farrell, Norval (CA); Richard

Farrell, Norval (CA); Harry E. Ruda,

Toronto (CA)

(73) Assignee: Nano Spark Inc., Toronto (CA)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 14/462,184

(22) Filed: Aug. 18, 2014

(65) Prior Publication Data

US 2014/0354137 A1 Dec. 4, 2014

Related U.S. Application Data

- (63) Continuation-in-part of application No. 14/233,522, filed as application No. PCT/CA2011/001184 on Oct. 24, 2011.
- (60) Provisional application No. 61/509,270, filed on Jul. 19, 2011.

(51)	Int. Cl.	
	H01T 13/46	(2006.01)
	H01T 13/32	(2006.01)
	H01T 13/20	(2006.01)
	F02P 13/00	(2006.01)

(52) U.S. Cl.

(58) Field of Classification Search

(56) References Cited

U.S. PATENT DOCUMENTS

5,731,654 A	3/1998	Benedikt et al.
2009/0140623 A1	6/2009	Ugalde
2009/0241321 A1	10/2009	Farrell et al.
2010/0133976 A1	6/2010	Siegel
2011/0025186 A1	2/2011	Kunitomo et al.
2011/0071874 A1	3/2011	Schneersohn et al.

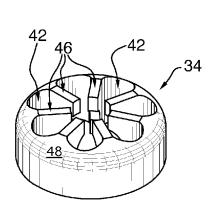
FOREIGN PATENT DOCUMENTS

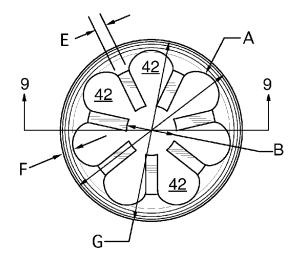
EP 0069993 A1 10/1986

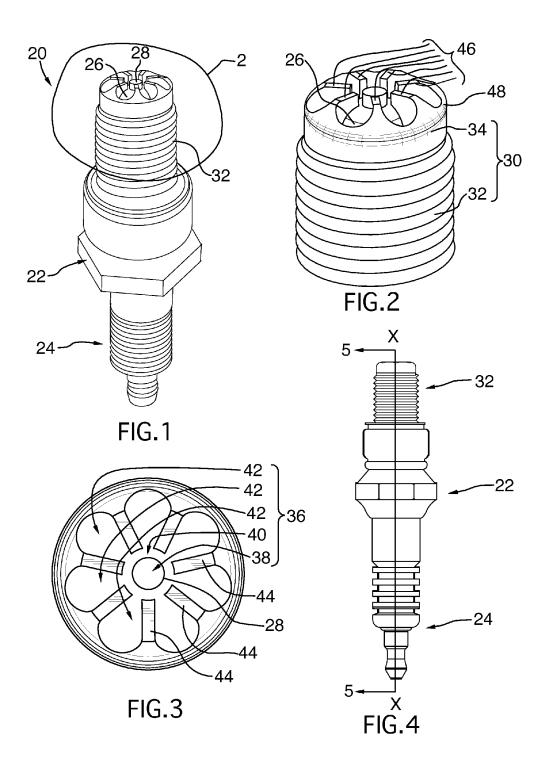
OTHER PUBLICATIONS

International Search Report and Written Opinion for PCT/CA2011/001184, dated Mar. 7, 2012.

Extended European Search Report CTM Application No. 11869542. 8-1801 / 2735065 PCT/CA2011001184 dated Oct. 22, 2014.


Primary Examiner — Mariceli Santiago


(74) Attorney, Agent, or Firm — Gifford, Krass, Sprinkle, Anderson & Citkowski, P.C.


(57) ABSTRACT

The plug comprises a nut, a coupling extending from the nut and adapted to receive an ignition wire and an insulator extending from the nut and away from the coupling. A positive electrode extends through the insulator. An externally-threaded tubular portion extends from the nut in surrounding relation to the insulator and terminating, short of the insulator end, in a cap that is disposed in spaced relation to the insulator. The cap defines a void having: a central portion into which the positive electrode extends; an annular channel surrounding the central portion; and a plurality of lobes, each positioned with respect to the central portion as the planet gears are positioned with respect to the sun gear in a planetary gear. The cap has a central surface that is axially spaced from the insulator and a convex surface that surrounds and extends to the central surface.

5 Claims, 4 Drawing Sheets

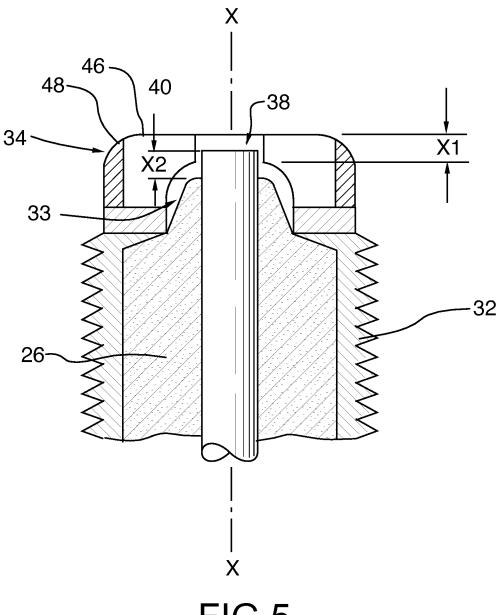


FIG.5

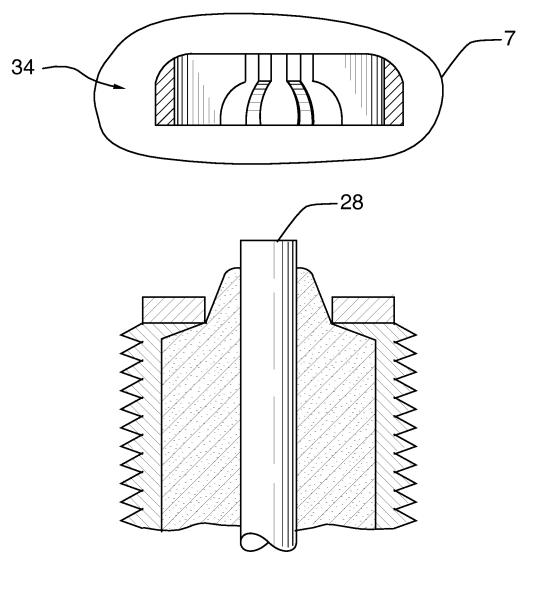


FIG.6

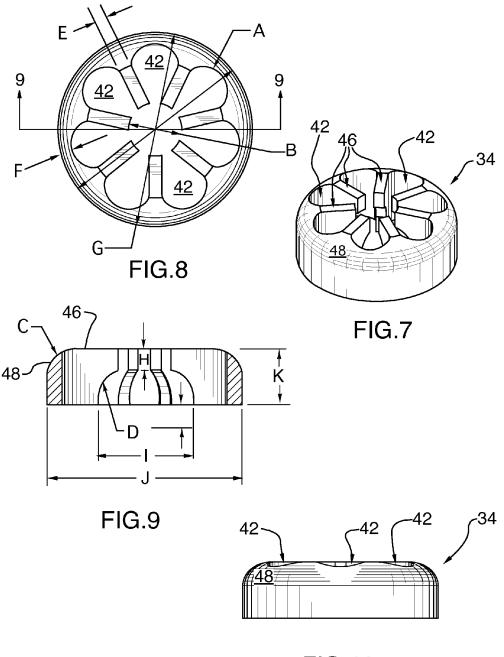


FIG.10

1 SPARK PLUG

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 14/233,522, filed Apr. 28, 2014, which is national stage entry application of PCT/CA2011/001184, filed Oct. 24, 2011, which claims priority of U.S. Provisional Application No. 61/509,270, filed Jul. 19, 2011, all of which 10 are incorporated herein in their entirety by reference.

FIELD OF THE INVENTION

The present invention relates to spark-ignited internal com- 15 R1 is the radius of each planet gear bustion engines.

BACKGROUND OF THE INVENTION

In internal combustion engines, it is conventional to initiate 20 combustion with the use of spark plugs. In conventional spark plugs, a body which defines a longitudinal axis is provided. The body has, adjacent one end thereof, a metal ring which is orientated coaxially with the longitudinal axis. The body further includes a metal tube which: is orientated coaxially 25 with the longitudinal axis; extends from the ring towards the other end of the body; and is externally-threaded for engagement in a corresponding threaded bore in an engine block in use. A porcelain insulator also forms part of the body. The insulator has a portion disposed inside the tube. This portion 30 extends axially, from inside the tube, beyond the ring, and has an elongate void extending axially therethrough. An elongate positive electrode occupies the void and extends axially beyond the insulator to a terminus which defines the one end of the body. Conventional spark plugs also include an elec- 35 trode leg. The electrode leg has two arms transversely connected to one another, with one arm extending axially from the ring and beyond the electrode and the other arm extending radially inwardly from the one arm so as to terminate in an end portion that is axially-spaced from the terminus. The spark 40 gap in this conventional plug is the space defined between the positive electrode and the electrode leg.

SUMMARY OF THE INVENTION

A spark plug forms one aspect of the invention. The plug, which is for use with an engine block/cylinder head having a threaded bore and is also for use with a spark plug wrench and an ignition wire, comprises a nut portion, a coupling portion, an insulator portion, a positive electrode and a ground elec- 50 trode. The nut portion is adapted to be turned by the wrench. The coupling portion extends from the nut portion and is adapted to receive the ignition wire. The insulator portion extends from the nut portion and away from the coupling portion to an end. The positive electrode extends through and 55 beyond the end of the insulator portion. The ground electrode includes a tubular metal portion and a cap portion to which the tubular portion extends. The tubular metal portion: extends from the nut portion in circumferentially surrounding relation to the insulator portion; terminates such that a portion of the 60 insulator portion extends beyond the tubular metal portion; is orientated coaxially about and defines a longitudinal axis; and is externally-threaded for engagement in the threaded bore in said engine block in use. The cap portion is disposed in spaced relation to the insulator portion and defines a void having: a 65 central portion into which the positive electrode extends; an annular channel surrounding the central portion; and a plu2

rality of lobes, each being positioned with respect to the central portion in a manner analogous to the placement of the planet gears with respect to the sun gear in a planetary gear. The cap also has a central surface that is axially spaced from that portion of the insulator that protrudes beyond the tubular metal portion; and a convex surface that surrounds and extends to the central surface.

According to another aspect of the invention, the central surface can be orientated substantially normally to the longitudinal axis and substantially coplanar with the end of the positive electrode.

According to another aspect of the invention, the plurality of lobes can consist of three to seven lobes.

According to another aspect of the invention, if

R2 is the distance from the axis of each planet gear to the axis of the sun gear

R3 is the outer radius of the ground electrode R4 is the outer radius of the annular channel

R1:R2:R3:R4:R5 can be about 0.12:0.305:0.475:0.25

According to another aspect of the invention, the plurality of lobes can consist of seven lobes.

According to another aspect of the invention, the cap portion can have radially inwardly disposed fingers which separate the lobes from one another, each finger having a terminus to which said each finger extends, the thickness of the finger at the terminus as measured in the longitudinal direction being substantially equal to the length of that portion of the positive electrode that extends beyond the insulation.

Other advantages, features and characteristics of the present invention, as well as methods of operation and functions of the related elements of the structure, and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following detailed description and the appended claims with reference to the accompanying drawings, the latter being briefly described hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of a spark plug according to an exemplary embodiment of the invention

FIG. 2 is an enlarged view of encircled area 2 of FIG. 1

FIG. 3 is an end view of the structure of FIG. 1;

FIG. 4 is a side view of the structure of FIG. 1;

FIG. 5 is a view along 5-5 of FIG. 4; and

FIG. 6 is a view similar to FIG. 5, illustrative of an exemplary method of manufacture;

FIG. 7 is a perspective view of encircled area 7 of FIG. 6;

FIG. 8 is a plan view of the structure of FIG. 7;

FIG. 9 is a view along 9-9 of FIG. 8; and

FIG. 10 is a side view of the structure of FIG. 7.

DETAILED DESCRIPTION OF THE EXEMPLARY EMBODIMENT

As an initial matter, the spark plug 20 according to the exemplary embodiment shown in FIGS. 1-4 is for use with an engine block/cylinder head having a threaded bore and also for use with a spark plug wrench and an ignition wire, all as is conventional.

The plug 20 also comprises, as is conventional, a nut portion 22, a coupling portion 24, an insulator portion 26, a positive electrode 28 and a ground electrode 30.

As is conventional: the nut portion 22 is adapted to be turned by the wrench; the coupling portion 24 extends from

3

the nut portion 22 and is adapted to receive the ignition wire; the insulator portion 26 extends from the nut portion 22 and away from the coupling portion 24 to an end; the positive electrode 28 extends through and beyond the end of the insulator portion 26. Also as is conventional, the ground electrode 30 includes a tubular metal portion 32 which: extends from the nut portion 22 in surrounding relation to the insulator portion 26; terminates such that a portion 33 of the insulator portion 26 extends beyond the tubular metal portion 32; is orientated coaxially about and defines a longitudinal axis X-X and is externally-threaded for engagement in the threaded bore in said engine block in use.

However, in this spark plug, there is provided a cap portion 34 to which the tubular portion 32 extends and is circumferentially connected.

The cap portion 34:

is disposed in spaced relation to the insulator 26 and defines a void 36 having: a central portion 38 into which the positive electrode 28 extends; an annular channel 40 surrounding central portion 38; and a plurality of lobes 42, each being positioned with respect to the central portion 38 in a manner analogous to the placement of the planet gears with respect to the sun gear in a planetary gear.

has a plurality of radially inwardly disposed fingers 44 which separate the lobes 42 from one another, each finger 44 having a terminus to which said each finger extends, the thickness X1 of the finger at the terminus as measured in the longitudinal direction being substantially equal to the length X2 of that portion of the positive electrode that extends beyond the insulation

has: (i) a central surface 46 that is axially spaced from that portion of the insulator 26 that protrudes beyond the tubular portion 32 and is orientated substantially normally to the longitudinal axis X-X and substantially coplanar with the end of the positive electrode 28; and (ii) a convex surface 48 that surrounds and extends from the tubular metal portion 32 to the central surface 46.

The geometry of the cap portion is such that if R1 is the radius of each planet gear, R2 is the distance from the axis of each planet gear to the axis of the sun gear, R3 is the outer radius of the ground electrode and R4 is the outer radius of the annular channel, then R1:R2:R3:R4:R5 is about 0.12:0.305: 0.475:0.25

The spark plug of the exemplary embodiment has proven to be of substantial advantage in numerous tests that have been carried out.

TABLE 1

Au	tolite AR3	932X	mod	dified AR	3932X	Gains		50
RPM	Torque. Lb/FT	HP	RPM	Torque. Lb/FT	НР	Gain In Torque Lb/Ft	Gain In HP	
5500 5600 5700 5800	444.4 448.8 450.2 451.1	502.1 516.4 527.3 537.9	5500 5600 5700 5800	448.3 453.8 455.3 456.8	506.2 521.9 532.9 544.3	+3.9 +5.0 +5.1 +5.7	+4.1 +5.5 +5.6 +6.1	55
5900 6000 6100 6200 6300 6400 6500	451.8 451.8 450.8 449.9 449.2 448.1 446.3	548.0 557.5 565.5 573.9 582.3 590.4 597.3	5900 6000 6100 6200 6300 6400 6500	457.7 457.3 457.2 456.8 455.7 453.7 451.7	554.8 563.9 573.2 582.3 590.3 597.4 604.1	+5.9 +5.5 +6.4 +6.9 +6.5 +5.6 +5.4	+6.8 +6.4 +7.7 +8.4 +8.0 +7.0	60
6600 6700 6800 6900 7000	444.1 441.6 438.4 435.8 432.0	603.8 609.6 614.5 619.9 623.9	6600 6700 6800 6900 7000	431.7 448.7 444.3 440.7 437.5 434.0	609.7 613.0 617.4 622.0 626.4	+3.4 +4.6 +2.7 +2.3 +1.7 +2.0	+6.8 +5.9 +3.4 +2.9 +2.1 +2.5	65

4

TABLE 1-continued

	Aut	olite AR3	932X	mod	dified AR3	3932X	Gains	
5	RPM	Torque. Lb/FT	HP	RPM	Torque. Lb/FT	HP	Gain In Torque Lb/Ft	Gain In HP
	7100	427.6	626.4	7100	430.5	630.3	+2.9	+3.9
	7200	423.1	629.0	7200	425.9	632.8	+2.8	+3.8
0	7300	418.5	631.0	7300	421.1	634.5	+2.6	+3.5
	7400	412.9	631.6	7400	415.4	635.0	+2.5	+3.4
	7500	406.5	630.4	7500	408.9	633.7	+2.4	+3.3
	7600	399.5	628.3	7600	402.5	632.7	+3.0	+4.4
	7700	392.4	625.5	7700	395.6	630.2	+3.2	+4.7
5	7800	385.7	623.4	7800	389.3	628.8	+3.6	+5.4
,	7900	379.2	621.0	7900	383.8	628.0	+4.6	+7.0
	8000	372.0	617.6	8000	377.2	625.8	+5.2	+8.2

Table 1 shows dynamometer tests carried out using a CRA Super Series Template 360 Chev Racing Engine with a 9:1 compression. Timing was set at 34. The carburetor used was a Holly 390 with 77 jets. Oil used was 15/40 viscosity. Fuel octane: 110. Load factor was set at 1.21. The left columns show developed torque and HP at RPM values between 5500 and 8000 using a set of new, standard Autolite AR3932X plugs. The middle columns shows the same data set for the same plugs, modified with the inventive cap portion. The right columns shown the torque and horsepower gains, which manifest at all measured speeds.

TABLE 2

	OE	Autolite A	.R473	Мо	dified AR4	173	Ga	in
5	RPM	Torque. Lb/FT	HP	RPM	Torque. Lb/FT	HP	Gain In Torque	Gain In HP
	4500	428.7	391.1	4500	447.5	401.6	+18.8	+10.5
	4600	435.2	406	4600	449.6	412.6	+14.4	+6.6
)	4700	436	415.6	4700	449.8	421.7	+13.8	+6.1
	4800	437	425.5	4800	450.6	431.6	+13.6	+6.1
	4900	437.9	435.3	4900	450.6	440.6	+12.7	+5.3
	5000	437.8	444.3	5000	451.3	450.4	+13.5	+6.1
	5100	437.2	452.5	5100	450.2	458.3	+13	+5.8
	5200 5300	437.2 436 434.9	460.3 468	5200 5300	448.5 445.5	456.5 465.7 471.5	+13 +12.5 +10.6	+5.4 +3.5
5	5400	432.9	474.9	5400	442.7	477.5	+9.8	+2.9
	5500	429.5	479.9	5500	439.8	483.2	+10.3	+3.3
	5600	425.8	484.7	5600	437.1	489.2	+11.3	+4.5
	5700	422	489	5700	432.6	492.8	+10.6	+3.8
	5800	418.7	494	5800	429.1	497.7	+10.4	+3.7
	5900	413.9	496.8	5900	426	502.6	+12.1	+5.8
	6000	409.8	501	6000	421.2	505.6	+11.4	+4.6
)	6100 6200	404.3 399.3	502 504	6100 6200	416.7 411	508.6 510.1	+11.4 +12.4 +11.7	+6.6 +6.1
	6300	394.6	507	6300	405.1	511	+10.5	+4
	6400	388.2	507	6400	399.1	511.7	+10.9	+4.7
	6500	381.1	505	6500	392.7	511.4	+11.6	+6.4

Table 2 shows dynamometer tests carried out using a NASCAR-approved, NCATS Series Restricted 11/8" engine with 10:1 compression. Timing was set at 30. The carburetor used was a Holly 390 with 64/64 jets. Oil used was 15/40 viscosity. Fuel octane: 94. Load factor was set at 1.21. The left columns show developed torque and HP at RPM values between 4500 and 6500 using a set of new, standard Autolite AR473 plugs. The middle columns show the same data set for the same plugs, modified with the inventive cap portion. The right columns shown the torque and horsepower gains, which manifest all at all measured speeds.

6 TABLE 4-continued

(.045

modified AR3932X

Gains

				1022				
Auto	lite AR393	32X_	modi	ified AR3	932X	Gains	S	
RPM	Torque. Lb/FT	НР	RPM	Torque. Lb/FT	НР	Gain In Torque Lb/Ft	Gain In HP	:
4500	667.0	572.0	4500	667.0	572.0	+0.0	+0.0	
4600	671.0	587.0	4600	671.0	588.0	+0.0	+1.0	
4700	673.0	603.0	4700	677.0	605.0	+4.0	+2.0	
4800	676.0	618.0	4800	682.0	623.0	+6.0	+5.0	
4900	678.0	632.0	4900	684.0	638.0	+6.0	+6.0	1
5000	678.0	645.0	5000	686.0	653.0	+8.0	+8.0	
5100	679.0	660.0	5100	686.0	666.0	+7.0	+6.0	
5200	682.0	675.0	5200	686.0	679.0	+4.0	+4.0	
5300	685.0	691.0	5300	689.0	695.0	+4.0	+4.0	
5400	688.0	708.0	5400	691.0	711.0	+3.0	+3.0	
5500	691.0	724.0	5500	692.0	724.0	-1.0	+0.0	1
5600	694.0	740.0	5600	693.0	739.0	-1.0	-1.0	1
5700	695.0	754.0	5700	694.0	753.0	-1.0	-1.0	
5800	694.0	766.0	5800	695.0	768.0	+1.0	+2.0	
5900	690.0	775.0	5900	695.0	781.0	+5.0	+6.0	
6000	688.0	786.0	6000	692.0	791.0	+4.0	+5.0	
6100	684.0	795.0	6100	688.0	799.0	+4.0	+4.0	_
6200	682.0	805.0	6200	685.0	809.0	+4.0	+5.0	2
6300	678.0	813.0	6300	681.0	817.0	+3.0	+4.0	
6400	671.0	818.0	6400	677.0	825.0	+6.0	+7.0	
6500	663.0	821.0	6500	670.0	830.0	+7.0	+9.0	
6600	654.0	822.0	6600	663.0	833.0	+9.0	+9.0	
6700	644.0	822.0	6700	653.0	834.0	+9.0	+12.0	
6800	636.0	824.0	6800	646.0	837.0	+10.0	+13.0	2
6900	626.0	822.0	6900	636.0	835.0	+10.0	+12.0	
7000	615.0	820.0	7000	626.0	834.0	+11.0	+14.0	

10	RPM	Torque. Lb/FT	HP	gap) RPM	Torque. Lb/FT	НР	Gain In Torque Lb/Ft	Gain In HP
	6900 7000	626.0 615.0	822.0 820.0	6900 7000	635.0 627.0	834.0 836.0	+9.0 +12.0	+12.0 +16.0
15							rried out us	_
20	was so jets. C factor torque	et at 32. Dil used was se and HF	The ca was 15 t at 0.7 at RPI	rburet 5/40 v 77. Th M valu	or used iscosity to left of le	was a H Fuel columns een 450	0.045 gap. Tholly 850 woctane: 110. show development of the show development of the show the	tith 77 Load eloped using
25	colum with the	ns show he inven and hor	the sar	ne dat porti	a set for on. The	the san	ne plugs, mo olumns shov est at all but	dified wn the

Autolite AR3932X

Table 3 shows dynamometer tests carried out using a Chevy Big Block at 12:1 Compression. Timing was set at 32. 30 The carburetor used was a Holly 850 with 77 jets. Oil used was 15/40 viscosity. Fuel octane: 110. Load factor was set at 0.77. The left columns show developed torque and HP at RPM values between 4500 and 7000 using a set of new, standard Autolite AR3932X plugs. The middle columns show the same data set for the same plugs, modified with the inventive cap portion. The right columns shown the torque and horsepower gains, which manifest at all but 5500-5700 RPM.

TABLE 5

HORSE POWER

						SON			
		OE A	R3932X	ζ.			NS AR39	932X	
35	#1 HP OE	#2 HP OE	#3 HP OE	Average OE HP	RPM	Average NS HP	#1 HP NS	#2 HP NS	#3 HP NS
	572	569	571	570.6	4500	572	571	572	573
	587	583	587	585.6	4600	587.6	588	588	587
40	603	599	604	602	4700	604.3	605	605	603
	618	615	621	618	4800	621.3	622	623	619
	632	629	636	632.3	4900	636.3	637	638	634
	645	642	650	645.6	5000	650.3	651	653	647
	660	655	662	659	5100	664.3	665	666	662
45	675	671	676	674	5200	678.6	680	679	677
	691	689	692	690.6	5300	693.6	692	695	694
	708	706	707	707	5400	709.6	708	711	710
50	724	723	724	723.6	5500	724.3	723	724	726
	740	740	741	740.3	5600	740	739	739	742
50	754	754	755	754.3	5700	755	754	753	758
	766	764	768	766	5800	767.6	765	768	770
	775	774	778	775.6	5900	780.3	778	781	782
55	786	783	789	786	6000	791.6	790	791	794
	795	794	797	795.3	6100	801.6	801	799	805
33	805	806	806	805.6	6200	811.6	810	809	816
	813	814	813	813.3	6300	818.6	816	817	823
	818	819	819	818.6	6400	826	825	825	828
60	821	823	825	823	6500	830.6	829	830	833
	822	826	828	825.3	6600	833	831	833	835
	822	828	830	826.6	6700	834.3	833	834	836
	824	827	828	826.3	6800	836	834	837	837
	822	826	824	824	6900	835	834	835	836
65	820	825	822	822.3	7000	835.3	836	834	836

TA	RI	\mathbf{F}	1

			mo	dified AR3	932X	_		
Aut	tolite AR3	932X	(.045			Gains		
RPM	Torque. Lb/FT	НР	gap) RPM	Torque. Lb/FT	НР	Gain In Torque Lb/Ft	Gain In HP	45
4500	667.0	572.0	4500	668.0	572.0	+1.0	+0.0	
4600	671.0	587.0	4600	672.0	588.0	+1.0	+1.0	
4700	673.0	603.0	4700	678.0	607.0	+5.0	+4.0	
4800	676.0	618.0	4800	681.0	623.0	+5.0	+5.0	50
4900	678.0	632.0	4900	681.0	635.0	+3.0	+3.0	
5000	678.0	645.0	5000	680.0	647.0	+2.0	+2.0	
5100	679.0	660.0	5100	679.0	659.0	+0.0	-1.0	
5200	682.0	675.0	5200	680.0	673.0	-2.0	-2.0	
5300	685.0	691.0	5300	688.0	694.0	+3.0	+3.0	
5400	688.0	708.0	5400	689.0	708.0	+1.0	+0	55
5500	691.0	724.0	5500	690.0	723.0	-1.0	+1.0	
5600	694.0	740.0	5600	693.0	739.0	-1.0	-1.0	
5700	695.0	754.0	5700	695.0	754.0	+0.0	+0	
5800	694.0	766.0	5800	693.0	765.0	-1.0	-1.0	
5900	690.0	775.0	5900	692.0	778.0	+2.0	+3.0	
6000	688.0	786.0	6000	692.0	790.0	+4.0	+4.0	60
6100	684.0	795.0	6100	690.0	801.0	+6.0	+6.0	00
6200	682.0	805.0	6200	686.0	810.0	+4.0	+5.0	
6300	678.0	813.0	6300	681.0	816.0	+3.0	+3.0	
6400	671.0	818.0	6400	677.0	825.0	+6.0	+7.0	
6500	663.0	821.0	6500	670.0	829.0	+7.0	+8.0	
6600	654.0	822.0	6600	661.0	831.0	+7.0	+9.0	
6700	644.0	822.0	6700	653.0	833.0	+9.0	+11.0	65
6800	636.0	824.0	6800	644.0	834.0	+8.0	+10.0	

TABLE 6

			C	TORQUE COMPARISON				
	OE AR	3932X				NS A	.R473	
#1 TQ OE	#2 TQ OE	#3 TQ OE	Average OE TQ	RPM	Average NS TQ	#1 TQ NS	#2 TQ NS	#3 TQ NS
667	664	666	665.6	4500	667.3	667	667	668
671	666	671	669.3	4600	671	672	671	670
673	669	675	672.3	4700	676.3	676	677	676
676	673	680	676.3	4800	680.3	681	682	678
678	674	682	678	4900	683.6	683	684	684
678	674	683	678.3	5000	686	684	686	688
679	675	682	678.6	5100	685	685	686	684
682	678	683	681	5200	685.6	687	686	684
685	682	685	684	5300	688.3	688	689	688
688	687	688	687.6	5400	690	689	691	690
691	690	691	690.6	5500	691.6	690	692	693
694	694	695	694.3	5600	694	693	693	696
695	695	696	695.3	5700	695.6	695	694	698
694	692	695	693.6	5800	695	693	695	697
690	689	692	690.3	5900	694.3	692	695	696
688	686	690	688	6000	693	692	692	695
684	684	687	685	6100	690.3	690	688	693
682	683	683	682.6	6200	687.3	686	685	691
678	678	678	678	6300	682.6	681	681	686
671	672	672	671.6	6400	677.6	677	677	679
663	665	666	664.6	6500	671	670	670	673
654	657	659	656.6	6600	663	661	663	665
644	649	651	648	6700	653.6	653	653	655
636	639	640	638.3	6800	645.6	644	646	647
626	629	628	627.6	6900	635.6	635	636	636
615	619	617	617	7000	626.6	627	626	627

Tables 5 and 6 show dynamometer tests for a Chevy Big Block. Timing was set at 32. The carburetor used was a Holly 850 with 77/77 jets. Oil used was 15/40 viscosity. Fuel octane: 110. Load factor was set at 0.77. In Table 5, the three left columns show developed horsepower at RPM between 4500 and 7000 using a set of new AR3932X plugs. The three right columns show the same data for the same plugs, modified with the inventive cap portion. Horsepower gains were obtained at all speeds but for 5600 RPM. In Table 6, the three left columns show developed torque at RPM between 4500 and 7000 using a set of new AR3932X plugs. The three right columns show the same data for the same plugs, modified with the inventive cap portion. Torque gains were obtained at all speeds but for 5600 RPM

In each of the examples, reference is made to plugs that have been modified with the inventive cap portion. In this regard, it will be appreciated that, in each case, the reference/baseline plug mentioned was modified by grinding off the electrode leg thereof and welding a ring thereto, as illustrated by FIG. 6.

An exemplary ring is shown in FIGS. **7-10**. This ring is produced from 304 2B stainless steel and is dimensioned as follows:

	.060 radius	A
	.13"	В
	.07" radius	C
60	.076R	D
60	.031"	E
	.028"	F
	.47''	G
	.05"	H
	.24"	I
	.47''	Ј
65	.13"	K

However, it will be understood that these dimensions were selected such that the distance between the positive electrode and the ring is the distance specified by the manufacturer of the vehicle with which the modified plug was used. Variation from these dimensions are possible and indeed would be adopted in other engine applications to meet the specifications of the engine manufacturer.

Further, whereas a seven lobe structure is disclosed, the plurality of lobes can consist of three to seven lobes.

Accordingly, it should be understood that the invention is to be limited only by the accompanying claims, purposively construed.

The invention claimed is:

- 1. A spark plug for use with an engine block/cylinder head having a threaded bore and also for use with a spark plug wrench and an ignition wire, the plug comprising:
 - a nut portion adapted to be turned by the wrench;
 - a coupling portion extending from the nut portion and adapted to receive the ignition wire;
 - an insulator portion extending from the nut portion and away from the coupling portion to an end;
 - a positive electrode extending through and beyond the end of the insulator portion; and
 - a ground electrode including

55

- a tubular metal portion extending from the nut portion in surrounding relation to the insulator portion, the tubular portion being orientated coaxially about and defining a longitudinal axis and further being externallythreaded for engagement in the threaded bore in said engine block in use; and
- a cap portion to which the metal portion extends and disposed in spaced relation to the insulator portion, the cap portion
 - defining a void having: a central portion into which the positive electrode extends; an annular channel

9

surrounding the central portion; a plurality of lobes, each being positioned with respect to the central portion in a manner analogous to the placement of the planet gears with respect to the sun gear in a planetary gear,

having a central surface axially spaced from that portion of the insulator that protrudes beyond the tubular portion a convex surface that surrounds and extends to the central surface, and

- radially inwardly disposed fingers which separate the lobes from one another, each finger having a terminus to which said each finger extends, the thickness of the finger at the terminus as measured in the longitudinal direction being substantially equal to the length of that portion of the positive electrode 15 that extends beyond the insulation.
- 2. The spark plug according to claim 1, wherein the central surface is orientated substantially normally to the longitudinal axis and substantially coplanar with the end of the positive electrode
- 3. A spark plug according to claim 1, wherein the plurality of lobes consists of three to seven lobes.
 - 4. A spark plug according to claim 3, wherein if
 - R1 is the radius of each planet gear
 - R2 is the distance from the axis of each planet gear to the 25 axis of the sun gear

R3 is the outer radius of the ground electrode

- R4 is the outer radius of the annular channel
- R1:R2:R3:R4:R5 is about 0.12:0.305:0.475:0.25.
- **5**. A spark plug according to claim **4**, wherein the plurality 30 of lobes consists of seven lobes.

* * * * *

10